Appendix 1
 Details on the derivation of EC_{50} estimators and their variances

Derivation of point estimators of EC_{50}

For NEL count, the GLM described in the manuscript yielded the following equation:

$$
\begin{equation*}
\frac{\widehat{y}_{J}}{T}=e^{\left(\widehat{\beta}_{o}+\hat{\tau}_{j}+\widehat{\beta}_{1} C+\widehat{\beta}_{2} t+\widehat{\beta}_{3 j} t+\widehat{\beta}_{4} C t\right)} \tag{1}
\end{equation*}
$$

where $\frac{\widehat{y_{j}}}{T}$, is the estimated ratio between NEL count under extract j and the offset T which corresponds to the natural logarithm of total eggs, C and t are extract concentration and time, $\hat{\beta}_{o}, \hat{\beta}_{1}, \hat{\beta}_{2},\left\{\hat{\beta}_{3 j}\right\}_{j=1}^{4}, \hat{\beta}_{4}$ are the maximum likelihood estimates of the intercept, and regression coefficients for concentration, time, extract by time interaction (one coefficient per extract), and concentration by time interaction, $\hat{\tau}_{j}$ is the maximum likelihood estimate of the effect of extract $j, j=1,2,3,4$.
Let $p=\frac{\widehat{y_{j}}}{T}$, from Equation 1, it follows that

$$
\begin{equation*}
\ln (p)=\hat{\beta}_{o}+\hat{\tau}_{j}+\hat{\beta}_{1} C+\hat{\beta}_{2} t+\hat{\beta}_{3 j} t+\hat{\beta}_{4} C t \tag{2}
\end{equation*}
$$

Finding EC_{50} for a given extract and time, say j and t, respectively, amounts to set $\mathrm{p}=0.5$ and solving for C in Equation 2 which yields:

$$
\begin{equation*}
\widehat{E C}_{50}(j, t, \hat{\theta})=\frac{\ln (0.5)-\left(\hat{\beta}_{o}+\hat{\tau}_{j}+\hat{\beta}_{2} t+\hat{\beta}_{3 j} t\right)}{\hat{\beta}_{1}+\hat{\beta}_{4} t} \tag{3}
\end{equation*}
$$

Notice that estimated EC_{50} depends on the extract, time and estimated parameters, that is, depends on j, t and estimated model location parameters $\hat{\theta}$, hence the notation $\widehat{E C}_{50}(j, t, \hat{\theta})$.

On the other hand, for the $\mathrm{EHT}, \mathrm{EC}_{50}$ is obtained according to the following procedure. The GLM used to model these data permits to estimate cumulative probabilities as follows:

$$
\begin{equation*}
P(\widehat{Y \leq} k)=\frac{1}{1+e^{-\left(\widehat{\beta}_{0 k}+\hat{\tau}_{j k}+\widehat{\beta}_{1 j k} C\right)}} \tag{4}
\end{equation*}
$$

where, $P(\widehat{Y \leq} k)$ is the estimated probability of the response variable (the ordinal variable described in the manuscript) being smaller or equal than $k, k=1,2, \hat{\beta}_{o k}$ and $\left\{\hat{\beta}_{1 j k}\right\}_{j=1}^{4}$, are maximum likelihood estimates of the intercept and regression coefficients for concentration by time interaction for the $k^{t h}$ response category, $\hat{\tau}_{j k}$ is the maximum likelihood estimate of the effect extract $j, j=1,2,3,4$, for the $k^{t h}$ response category, and C is the concentration. It is worth
mentioning that under this model, although there are three categories, cumulative probabilities are computed only for categories 1 and 2 since $P(Y \leq 3)=1$.
Let $D:=(Y=2) \cup(Y=3)$, that is, the event of death at ME or EL stages, equivalently, it is the event of not reaching the larvae stage. Thus, by properties of probability measures

$$
\begin{gathered}
\widehat{P(D)}=P(\widehat{Y=} 2)+P(\widehat{Y=} 3)=1-P(\widehat{Y=} 1) \\
\text { but, } P(\widehat{Y=} 1)=P(\widehat{Y \leq} 1)=\frac{1}{1+e^{-\left(\widehat{\beta}_{01}+\hat{\tau}_{j 1}+\widehat{\beta}_{1 j 1} C\right)}} \\
\text { so, } 1-P(\widehat{Y=} 1)=\widehat{P(D)}=\frac{1}{1+e^{\widehat{\beta}_{01}+\hat{\tau}_{j 1}+\widehat{\beta}_{1 j 1} C}}
\end{gathered}
$$

Let $\pi:=\widehat{P(D)}$, then

$$
\begin{equation*}
\ln \left(\frac{\pi}{1-\pi}\right)=-\left(\hat{\beta}_{01}+\hat{\tau}_{j 1}+\hat{\beta}_{1 j 1} C\right) \tag{5}
\end{equation*}
$$

Finding EC_{50} for a given extract, say j , amounts to set $\pi=0.5$ in Equation 5 and solving for C , thus,

$$
\begin{gather*}
\ln (1)=-\left(\hat{\beta}_{01}+\hat{\tau}_{j 1}+\hat{\beta}_{1 j 1} C\right) \\
0=-\left(\hat{\beta}_{01}+\hat{\tau}_{j 1}+\hat{\beta}_{1 j 1} C\right) \\
\widehat{E C}_{50}(j, \hat{\delta})=-\frac{\hat{\beta_{01}}+\hat{\tau_{j 1}}}{\hat{\beta_{1 j 1}}} \tag{6}
\end{gather*}
$$

Again, notation $\widehat{E C}_{50}(j, \hat{\delta})$ is used to remark that estimated EC_{50} depends on extract level and estimated location model parameters $\hat{\delta}$.

Equations 3 and 6 show the estimators of EC_{50} for EHT and LEIT, since model parameters were estimated by maximum likelihood, by the invariance property of this kind of estimators, $\widehat{E C}_{50}(j, t, \widehat{\theta})$ and $\widehat{E C}_{50}(j, \hat{\delta})$ are maximum likelihood estimators as well. Moreover, these are ratios of correlated random variables whose variances do not have a closed form. Thus, in order to obtain their standard errors, some approximate method must be used. In this case, the Delta method was employed to derive approximate algebraic expressions for $\operatorname{Var}\left[\widehat{E C}_{50}(j, \hat{\delta})\right]$ and $\operatorname{Var}\left[\widehat{E C}_{50}(j, t, \widehat{\theta})\right]$.

Delta method

Let $\hat{\theta}$ be an estimator of a p-dimensional parameter θ from a sample of size n, such that

$$
\sqrt{n}(\hat{\theta}-\theta) \xrightarrow{D} N_{p}(0, \Sigma)
$$

thus, Σ is the asymptotic covariance matrix of $\hat{\theta}$. Now, let $f\left(t_{1}, t_{2}, \ldots, t_{p}\right)$ be a real-valued function with non-zero gradient vector in θ, then, the delta method states that

$$
\sqrt{n}[f(\hat{\theta})-f(\theta)] \xrightarrow{D} N_{p}\left(0,(\nabla f(\theta))^{\prime} \Sigma(\nabla f(\theta))\right)
$$

where $\nabla f(\theta)$ is the gradient vector of $f(\cdot)$ evaluated at θ.
Consequently, approximate standard errors can be computed as the positive square root of the quadratic form $(\nabla f(\theta))^{\prime} \Sigma(\nabla f(\theta))$ evaluated at $\hat{\theta}$ and $\hat{\Sigma}$ and these can be used to build Wald-type confidence intervals.

Thus, in this case, $(1-\alpha) \%$ Walt-type confidence intervals for $E C_{50}(j, \hat{\theta})$ and $E C_{50}(j, t, \hat{\theta})$ are given by:

$$
\begin{gathered}
\widehat{E C}_{50}(j, \hat{\delta}) \pm z_{\alpha / 2} \sqrt{\widehat{V a r}\left[\widehat{E C}_{50}(j, \hat{\delta})\right]} \\
\widehat{E C}_{50}(j, t, \hat{\theta}) \pm z_{\alpha / 2} \sqrt{\widehat{V a r}\left[\widehat{E C}_{50}(j, t, \hat{\theta})\right]}
\end{gathered}
$$

where $z_{\alpha / 2}$ is the $1-\alpha$ percentile of the standard normal distribution.

Gradient vectors

The gradient of a scalar-valued differentiable multivariate function is a vector that contains its partial derivatives.

The partial derivatives of $g:=E C_{50}(j, t, \theta)$ evaluated at $\hat{\theta}$ are

$$
\begin{array}{r}
\left.\frac{\partial g}{\partial \beta_{0}}\right|_{\theta=\hat{\theta}}=-\frac{1}{\hat{\beta}_{1}+\hat{\beta}_{4} t} \\
\left.\frac{\partial g}{\partial \tau_{i}}\right|_{\theta=\hat{\theta}}=-\frac{1}{\hat{\beta}_{1}+\hat{\beta}_{4} t} \\
\left.\frac{\partial g}{\partial \beta_{1}}\right|_{\theta=\hat{\theta}}=-\frac{\ln (0.5)-\left(\hat{\beta}_{0}+\hat{\tau}_{j}+\hat{\beta}_{2} t+\hat{\beta}_{3 j} t\right)}{\left(\hat{\beta}_{1}+\hat{\beta}_{4} t\right)^{2}} \\
\left.\frac{\partial \mathrm{~g}}{\partial \beta_{2}}\right|_{\theta=\hat{\theta}}=-\frac{t}{\hat{\beta}_{1}+\hat{\beta}_{4} t} \\
\left.\frac{\partial \mathrm{~g}}{\partial \beta_{3 j}}\right|_{\theta=\hat{\theta}}=-\frac{t}{\hat{\beta}_{1}+\hat{\beta}_{4} t}, j=1,2,3,4
\end{array}
$$

$$
\left.\frac{\partial \mathrm{g}}{\partial \beta_{4}}\right|_{\theta=\hat{\theta}}=-\frac{t\left(\ln (0.5)-\left(\hat{\beta}_{0}+\hat{\tau}_{j}+\hat{\beta}_{2} t+\hat{\beta}_{3 j} t\right)\right)}{\left(\hat{\beta}_{1}+\hat{\beta}_{4} t\right)^{2}}
$$

Similarly, the partial derivatives of $h:=E C_{50}(j, \delta)$ evaluated at $\hat{\delta}$ are

$$
\begin{gathered}
\left.\frac{\partial h}{\partial \beta_{0 k}}\right|_{\delta=\hat{\delta}}=\left\{\begin{array}{l}
-\frac{1}{\hat{\beta}_{1 k}}, \text { if } k=1 \\
0, \text { otherwise }
\end{array}\right. \\
\left.\frac{\partial h}{\partial \tau_{j k}}\right|_{\delta=\hat{\delta}}=\left\{\begin{array}{l}
-\frac{1}{\hat{\beta}_{1 k}}, \text { if } k=1 \\
0, \text { otherwise }
\end{array}\right. \\
\left.\frac{\partial h}{\partial \beta_{1 k}}\right|_{\delta=\hat{\delta}}=\left\{\begin{array}{l}
\frac{\hat{\beta}_{0 k}+\hat{\tau}_{j k}}{\hat{\beta}_{1 k}^{2}}, \text { if } k=1 \\
0, \text { otherwise }
\end{array}\right.
\end{gathered}
$$

