Supplementary material to "Constitutive Modeling of Hot Deformation of Carbon Steels in the Intercritical Zone"

Appendix. List of Symbols

- ρ Density of dislocations
- ε Strain rate
- Ω Coefficient of softening or dynamic restoration
- U Coefficient of hardening
- σ True stress
- α Constant (α is the reciprocal stress at which the material changes from power to exponential stress dependence in MPa⁻¹)
- μ Shear module (it is the shear modulus at a temperature of 300 K) 4.21 X 10^4 zone α and 4.93 X 10^4 zone γ)
- b Burgers vector $(2.58 \times 10^{-10} \text{ m})$
- B, k Constants associated to the nucleation mechanisms and growth velocity
- X Recrystallized volumetric fraction
- ε_{C} Peak strain (s⁻¹)
- do Initial grain size
- Z Parameter of Zener Hollomon (the Zener–Hollomon parameter, which is particularly beneficial in describing hot working, since it embraces the two control variables)
- K Constant of the material
- σ_p Peak stress
- σ_{ss} steady stress level
- D(T) Self-diffusion coefficient
- E(T) Young's modulus
 - A Material constant (structure factor (s⁻¹))
 - *έ* Strain rate
- K_{Ω} , K_{U} Constants of the materials
- $T_{50\%}$ Time to reach 50% recrystallization
 - K_t Constant material
 - Q Activation energy (kJ/mol)

R	Gas constant (8.314 J mol ⁻¹ K ⁻¹)
Т	Temperature (K)
n	Exponential factor
sinh	hyperbolic sine function
$E(T)_I$	Young's module in intercritical zone $(\alpha + \gamma)$
$E(T)_{\alpha}$	Young's module in zone α
$E(T)_{\gamma}$	Young's module in zone γ
$%X_{\alpha}$	Percent Fraction α.
$\% X_{\gamma}$	Percent Fraction y
B_I	Intercritical zone constant
B_{lpha}	α zone constant (B is a structural parameter in m ⁻² α zone)
B_{γ}	γ zone constant
β_I	Intercritical zone constant
eta_{lpha}	$\boldsymbol{\alpha}$ zone constant (It is the dimensionless inverse stress that indicates the
	change from a power law to an exponential relationship between σ and
	(3
eta_γ	γ zone constant
Ω_I	Coefficient of softening in intercritical a zone
Ω_{lpha}	Coefficient of softening in α zone
Ω_{γ}	Coefficient of softening in γ zone
U_I	Coefficient of hardening in intercritical α zone
U_{α}	Coefficient of hardening in α zone
U_{γ}	Coefficient of hardening in γ zone
σ_I	Stress in intercritical zone
σ_{lpha}	Stress in a zone
σ_{γ}	Stress in γ zone
σ_{PE}	Experimental peak stress
σ_{PT}	Theoretical or modeled peak stress
\mathcal{E}_{PE}	Experimental peak strain
\mathcal{E}_{PT}	Theoretical or modeled peak strain
М	Taylor factor