Supplementary Material to "The Magnetic field for an n-cusped Epi- and Hypo-Cycloids loop current"

Appendix

A. Hypocycloid curve

A hypocycloid curve is a special plane curve generated by the trace of a fixed point P on a small circle that rolls within a larger circle. From the figure A1, the coordinates of the point P are:

$$
\begin{align*}
& x=(a-b) \cos \theta+b \cos \phi \tag{A.1}\\
& y=(a-b) \sin \theta-b \sin \phi \tag{A.2}
\end{align*}
$$

From figure A1, the arc length $A^{\prime} C P$ and $A^{\prime} O A$ are equal

$$
\begin{equation*}
a \theta=b(\theta+\phi) \rightarrow \phi=\left(\frac{a-b}{b}\right) \theta \tag{A.3}
\end{equation*}
$$

Replacing:

$$
\begin{align*}
& x=(a-b) \cos \theta+b \cos \left(\frac{a-b}{b} \theta\right) \tag{A.4}\\
& y=(a-b) \sin \theta-b \sin \left(\frac{a-b}{b} \theta\right) \tag{A.5}
\end{align*}
$$

Figure A1: A small circle of radius b rolls inside a larger circle of radius a in a clockwise direction. The trace of a fixed point P in the smaller circle describe a hypocycloid curve.

B. Epicycloid curve

An epicycloid curve is a special plane curve generated by the trace of a fixed point P on a small circle that rolls outside a larger circle. From the figure B1, the coordinates of the point P are:

$$
\begin{align*}
& x=(a+b) \cos \theta-b \cos \phi \tag{B.1}\\
& y=(a+b) \sin \theta-b \sin \phi \tag{B.2}
\end{align*}
$$

From figure B 1 , the arc length $A^{\prime} C P$ and $A^{\prime} O A$ are equal

$$
\begin{equation*}
a \theta=b(\phi-\theta) \rightarrow \phi=\left(\frac{a+b}{b}\right) \theta \tag{B.3}
\end{equation*}
$$

Replacing:

$$
\begin{align*}
& x=(a+b) \cos \theta-b \cos \left(\frac{a+b}{b} \theta\right) \tag{B.4}\\
& y=(a+b) \sin \theta-b \sin \left(\frac{a+b}{b} \theta\right) \tag{B.5}
\end{align*}
$$

Figure B1: A small circle of radius b rolls outside a larger circle of radius a in a counterclockwise direction. The trace of a fixed point P in the smaller circle describe an epicycloid curve.

