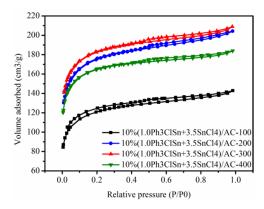

SUPPLEMENTARY MATERIAL

 $Ph_{n}SnCl_{4\text{-}n} \ \ supported \ \ on \ \ activated \ \ carbon \ \ as \ \ novel \ \ tin-based \ \ catalysts \ \ for \ \ acetylene \ hydrochlorination$


Yibo Wu, Longjie Cui, Rong Zhang, Rujing Pei, Sufang Hu, Ruyue Han, Huimin Yang, Fuxiang Li*, ⁶, Jianwei Xue and Zhiping Lv.

College of Chemistry and Chemical Engineering, Taiyuan University of technology, Taiyuan, 030024, China

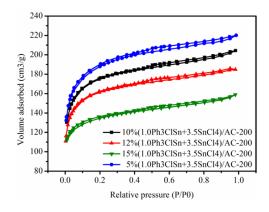

*e-mail: 163f64x@163.com

Figure 1S. (a) N_2 physisorption isotherms of AC and different catalysts. (b) N_2 physisorption isotherms of Ph_nSnCl_{4-n}-based catalysts with different Ph₃ClSn and SnCl₄ mole ratios

Figure 2S. N₂ physisorption isotherms of 1.0Ph₃ClSn+3.5SnCl₄/AC catalysts calcined at different temperatures

Figure 3S. N_2 physisorption isotherms of 1.0Ph₃ClSn+3.5SnCl₄/AC catalysts with different amounts of Ph₃ClSn + SnCl₄