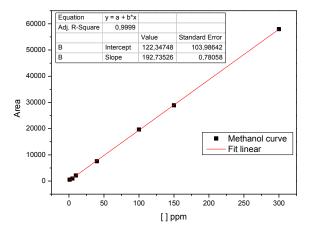

Supplementary Information

ETS-10 Modified with Cu_xO Nanoparticles and Their Application for the Conversion of CO₂ and Water into Oxygenates

Eliane R. Januário, Ana F. Nogueira and Heloise O. Pastore* a


^aGrupo de Peneiras Moleculares Micro e Mesoporosas and ^bLaboratório de Nanotecnologia e Energia Solar, Instituto de Química, Universidade Estadual de Campinas, 13083-970 Campinas-SP, Brazil

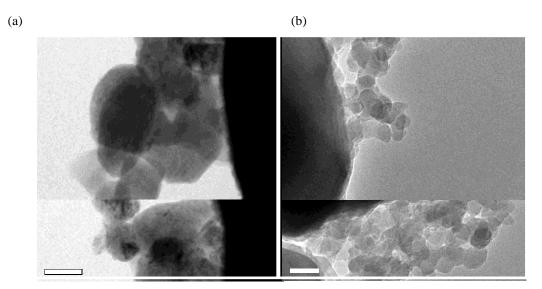
Photocatalytic reactor

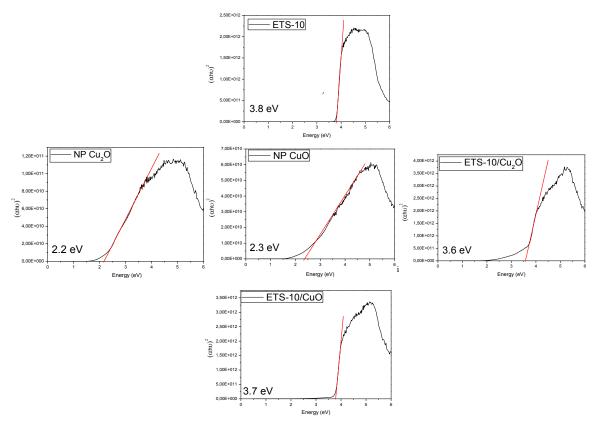
Figure S1. Reactor for photocatalytic reactions: (a) top view of the reactor with 50 mL total capacity; (b) glass support of powder and liquid water; (c) side view of the reactor; (d) reactor inside the solar simulator. Maximum temperature was 333 K.

^{*}e-mail: gpmmm@iqm.unicamp.br

Figure S2. Calibration curve of methanol solutions obtained experimentally by gas chromatography-flame ionization detector (GC-FID).

High resolution transmission electron microscopy (HRTEM)




Figure S3. High resolution transmission electron micrographs of (a) Cu₂O nanoparticles and (b) CuO nanoparticles.

Direct band gap estimations by Tauc equation

The absorption spectra can be used to estimate the energy gap of the materials through Tauc's formula:¹

$$(\alpha h \nu) \nu^{\eta} = B (h_0 - Eg) \tag{S1}$$

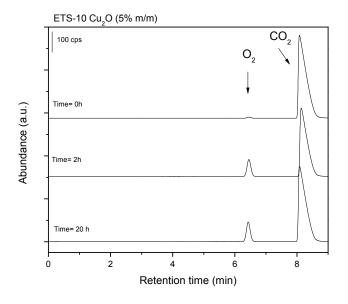

where B is a constant related to the material; hv is the photon energy in eV, h is Planck's constant; v is the frequency of the photon; Eg is the optical band gap in eV, η is an exponent that can take a value = 2 for a direct transition; α is the absorption coefficient and the value is proportional to the F(R ∞) = Kubelka Munk function. Moreover, the most common method to calculate the band gap energy (Eg) involves plotting (a hn)ⁿ vs. (hn), as shown in Figure S4.

Figure S4. Direct band gap estimations of Cu_2O , CuO nanoparticles, titanosilicate ETS-10, ETS-10/ Cu_2O and ETS-10/CuO by Tauc equation.

Gas phase chromatographic analysis

The gas phase was analyzed using a GC with TCD detector to determine O₂, CO and CO₂.

O evolution after 20 h of irradiation

Gas Peak area Area / %
O 800.01483 12.22865

CO 5742.12207 87.77135

Figure S5. Chromatograms of photocatalytic reaction applying the catalyst ETS-10/Cu₂O obtained by GC-TCD analysis and relative areas. Gas carrier: He; isotherm: 100 °C.

Possible mechanisms of acetic acid formation

Srinivas *et al.*² proposed the mechanism for acetic acid formation in reaction media, associated to formic acid and methanol formation in contact of catalyst and irradiation, as follow:

$$CO_2 + CO_2^- \longrightarrow CO + CO_3^{2-}$$
 $CO_2 + 2 H^+ + e^- \longrightarrow HCOOH$

CH₃OH + COOH + H⁺ + e⁻ $\longrightarrow CH_3COOH$

Acetic acid formation occurs also by glyoxal pathway from CO_2 to CH_4 . This mechanism was proposed by Shkrob *et al.*³ using EPR technique. Methyl radicals can also be formed from acetaldehyde along a different pathway if the aldehyde is oxidized to acetic acid.

Figure S6. Possible pathways to acetic acid during photocatalytic reactions.

Catalytic activity

The catalytic activity can be calculate by equation:^{4,5}

$$R = [Product] / time[catalyst]$$
 (S3)

where [Product] are given in µmol or ppm.

For example:

ETS-10/CuO = R =
$$[120] / (20 \times 0.050) = 120 \text{ mol (mol h)}^{-1}$$

Then, we divided the mol number of products for mol number of photoactive material on photocatalyst.

$$120 \times 10^{\text{-}6} \ \text{mol} \ / \ (3.14 \times 10^{\text{-}5} \ \text{mol}) = 3.82 \ \text{mol}_{product} \ (\text{mol}_{catalyst} \ h)^{\text{-}1}$$

References

- 1. Tahir, M.; Amin, N. S.; Energy Convers. Manage. 2013, 76, 194.
- 2. Srinivas, B.; Shubhamangala, B.; Lalitha, K.; Reddy, P. A. K.; Kumari, V. D.; Subrahmanyam, M.; De, B. R.; *Photochem. Photobiol.* **2011**, *87*, 995.
- 3. Dimitrijevic, N. M.; Shkrob, I. A.; Gosztola, D. J.; Rajh, T.; J. Phys. Chem. C 2012, 116, 878.
- 4. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K.; Angew. Chem., Int. Ed. 2013, 52, 7372.
- 5. Slamet; Nasution, H. W.; Purnama, E.; Kosela, S.; Gunlazuardi, J.; Catal. Commun. 2005, 6, 313.