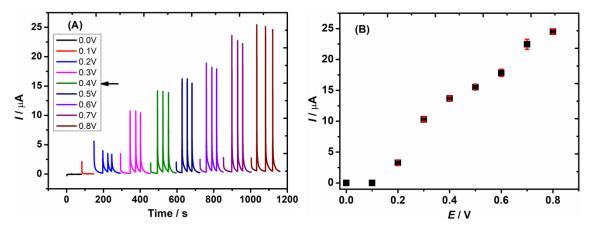

Supplementary Information

Additive Manufacturing towards the Fabrication of Greener Electrochemical Sensors for Antioxidants

Nélio I. G. Inoque,^{a,b} Lucas V. de Faria^a and Rodrigo A. A. Muñoz [®]*^a


^aInstituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia-MG, Brazil

^bEscola Secundária de Sussundenga, Ministério da Educação e Desenvolvimento Humano, Vila de Sussundenga, Provícia de Manica, Moçambique

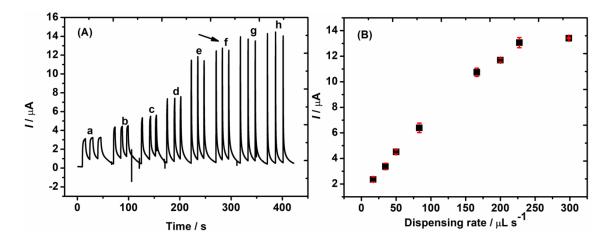


Figure S1. (A) Cyclic voltammetric recordings for 1 mmol L^{-1} PY in 0.12 mol L^{-1} BR buffer (pH range from 2.0 to 8.0). (B) pH influence at peak potential (Ep) and (C) pH influence at peak current (Ip).

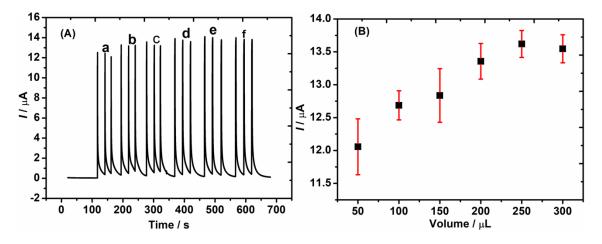

*e-mail: munoz@ufu.br

Figure S2. (A) BIA-AD recordings obtained from 3 successive injections of 100 μ mol L⁻¹ PY. (B) Hydrodynamic voltammogram obtained by plotting the peak current values (average of 3 injections) as function of the corresponding applied potential. Electrolyte: BR buffer (0.12 mol L⁻¹, pH 6.0). Conditions: injected volume: 100 μ L and dispensing rate: 200 μ L s⁻¹.

Figure S3. BIA-AD recordings obtained from 3 successive injections of 100 μ mol L⁻¹ PY as function of dispensing rate (a) 16.9, (b) 34.5, (c) 50, (d) 83.3, (e) 166, (f) 200, (g) 227.3 and (h) 300 μ L s⁻¹. (B) Influence of the dispensing rate on peak current (Ip) of the PY. Conditions: injected volume: 100 μ L and working potential: 0.4 V.

Figure S4. BIA-AD recordings obtained from 3 successive injections of 100 μ mol L⁻¹ PY as function of injected volume (a) 50, (b) 100, (c) 150, (d) 200, (e) 250 and 300 μ L. (B) Influence of the injected volume on the peak current (Ip) of the PY. Conditions: dispensing rate: 200 μ L s⁻¹ and working potential: 0.4 V.

